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The potential flow of an inviscid ferromagnetic fluid is formulated as a Hamiltonian 
system: the conjugate coordinates are the normal displacement of the free surface 
and the velocity potential on the free surface. If we take the equation of the magnetic 
field as a constraint, we can see that the flow of a magnetic liquid is a control-theory 
problem ; the potential of the magnetic self-field is the control variable. 

1. Introduction 
A magnetic fluid is a homogeneous suspension of ferrite particles in a solvent and 

it behaves like a normal fluid except that it can experience magnetic force. It is a 
good insulator, so the interactions of magnetic fields with currents of free charge can 
be taken as negligible. When the magnetic fluid is placed in an external magnetic field, 
a self-field and magnetic force appear in it; if the surface of the fluid is free, the shape 
of the volume is deformed; therefore the self-field and the magnetic force are modified. 
In previous work we derived a variational principle for the study of the equilibrium 
of a magnetic fluid which is applicable to a large class of problems, such as an 
electrized meniscus Joffre (1984) or the levitation melting process Sneyd & Moffat 
(1982), but such a method seemed to be unusable for a non-static process. We propose 
here, via Hamiltonian formalism, a generalization of the method for dynamic 
processes. Some studies have been devoted to variational principles for surface waves, 
for example Luke (1967), Miles (1977), Milder (1977), but the variations of the 
Lagrangian or Hamiltonian were taken along a vertical axis z ; that is, if z = f(z, y, t )  
is the equation of the interface, the variations are 6f. As this method is not possible 
for any configuration, see Benjamin & Olver (1982), to obtain information about the 
general case, we propose to take variations along the normal of the surface. 

2. Dynamic and magnetic equations 
We shall consider a simple model for a magnetic fluid, see Cowley & Rosensweig 

(1967); for further discussion of models the reader can consult Brancher (1980) or 
Rosensweig (1985). The magnetic fluid is in the volume Q,, Q, is the exterior of Q,, 
and it is submitted to an external magnetic field H,; the total magnetic field is 
H = H, + h, where h is the self-field produced by the magnetic fluid ; we shall neglect 
hysteresis, hydrodynamic relaxation of ferrite particles and consider that the 
magnetization M is parallel to H, i.e. M = x ( H )  H.  

If z is the vertical coordinate and if the fluid is inviscid, Newton’s law gives 

(2.1 a)  DV 
Dt 

p-= -VV(p+pgz)+p,M*VH. 
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Conservation of volume is written 

and the surface strain density is 
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v * v = o ,  (2.lb) 

where R is the unit normal vector. In (2.2) M.n is the scalar product, and we note 
that M*ri = M ,  and, as M and Hare  parallel, 

/ r H  \ 

M * V H  = V [ J M(y) dy) . 
0 

As the initial flow is supposed to be potential, (2.1 b) reduces to 

VZ$ = 0 .  

Equation (2.1 a )  gives the Bernoulli relation 

Using Laplace's law and (2.2) on the boundary S of 51, we obtain 

where C is the mean curvature of S and k ( t )  is a function of time. We must consider 
the kinematic condition on S: the normal velocity of the interface is equal to the 
normal velocity of the fluid. If the normal displacement is Oil ,  with 8 a real function 
defined on S, the velocity of the interface is @/at )  (Oi l )  and the normal velocity is 
( a p t )  (eil).il. 

But 

because A*ai l /a t  = 0. Thus the kinematic relation is 

Now let H, = Ho+h,, where h, is the field due to the presence of the magnetic 
fluid; then V A h, = 0, and therefore h, = Vu, in 52,. The magnetic induction is 
B, = ,u,(H,+M(H,)) in 51, and B, = p, H, in 52, and B, satisfy V - B ,  = 0;  the 
normal component of B and the tangential component of H are conserved, i.e. 
H,, = H I R + M ,  and Hlt = H,, on S; the second relation is equivalent to u, = u2 on 
S. 

Let Em be the magnetic energy: 

A direct calculation of the first variation of Em gives 
P F 

6Em = po J (HI + M(H,))*6Wl d51 + 
n1 



Hamiltonian formalism for jlow of a magnetic Juid 

We note that SH, = V ~ U , ;  then 

6Em = , U ~ ~ ~ ( H ~ + M ( H ~ ) ) . A S ~ ~ ~ S - ~ ~  

383 

V - ( H l + M ( H l ) )  6ul dR-poJ V *  H, 6u,dSZ. (2.9) 
n2 

Therefore the relation 

gives the magnetic equations; the relation (2.10) implies that (2.7) is a correct form 
of the magnetic energy. 

6Em = 0 for any 6u (2.10) 

3. Hamiltonian formulation and discussion 
The Hamiltonian &' involves the other energies 

u, = u ds, K = &J In, IV#d52, ug = I , ,pBzdQ,  I, (3.1) 

which are gravitational energy, interfacial energy and kinetic energy respectively. 
Thus the Hamiltonian is 

(3.2) 
1 

P 
&' = - ( K +  Ug+ U,- E m ) .  

The minus sign in (3.2) is because the currents in the external coils remain at constant 
amplitude, see Sneyd & Moffatt (1982). 

Suppose that 52, is perturbed by a small displacement 68A normal to S; then the 
changes in U, and U, are 

zseds, su, = alsc6eds, (3.3) 

and the change in Em is 

Now, for simplicity, let H = V @ ,  then 

But as the tangential component of H is conserved through S, G1 - @, = 0 on S + 6S, 
and the first variation is 

--A- - H,, - H,, = - M , ,  aQ1 a 0  
an an 

We recall that 

then we obtain 60 , -6@,  = 68Mn on S ,  and 
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but HT = en + et, Hi = H2,, + et and H I ,  = H,, ; thus 
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The variation of kinetic energy is given by (see the Appendix) 

We now multiply the relation (2.5) by 68 and integrate over S: 

We note that Js 68 dS = 0 because the volume is conserved. 
We can recognize in the right-hand side of (3.7) a part of 6%' that is 

Using the kinematic relation (2.6) the left-hand side of (3.8) is 

But if $s is the value of $ on S, the time derivative of $s is 

a$ I w a e .  -- 
at at an at ' 

thus 

Therefore we obtain Hamilton's first equation 

- a x  
at ae * 

- - -- 

Now let be a variation of $s ; then the variation of .#' is 

But since a$/an = ae/at on S ,  
ae I, S a t  

6x= 6$ -ds. 

The relation (3.12) can be written 

ae ax 
at -6' _ -  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

which is Hamilton's second equation. 
The relations (3.10) and (3.13) show that the flow is Hamiltonian and that the 

conjugate variables are 0 and $s; $s is the momentum and 0 the position. The result 
is still applicable to the problems cited in 81. We note that Mestel (1983)' in 
calculating the shape of a levitated liquid metal, introduced the potential flow 
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induced by deformation of the volume. This method might seem to be somewhat 
different from the variational method of Sneyd & Moffatt, but the Hamiltonian 
structure of the problem shows that the two methods are equivalent. 

Appendix. Variation of the kinetic energy 
If 68 is the vector displacement of a point x during the deformation of the volume 

SZ,, the new position of the point is x+M, and the Jacobian matrix of this 
transformation is 

J = v(x + 68) =I+ v ( q ,  
where I is the identity matrix. To obtain the variation of K we can proceed by a 
change of variables; that is, if SZ, + 652, is the deformed volume then 

K + 6 K  = $I IV+12dQ = $JQIItJ-lV+lzdetJdQ. (A 1)  
a1 + sm 

We now expand to first order in 68 the integral in the right-hand side of (A 1). We 
have 

(detJ) = l+v*(68)+0(68) 

and v - 1 =  /-tv(6e) +o(6e); 
I- F 

so 

which gives the surface integral, as Vz+ = 0, 

(A 3) 

The relation (A 3) is equivalent to (3.6) because the displacement 68 of S is normal 
to S, i.e. we have 68 = 68ii. 

6~ = $ p+I26e*aiw-p v+-se%ds. a+ L s, 
We are grateful to the referee who suggested a simpler proof for (3.5). 
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